Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
Sustainable Development ; 31(2):959-975, 2023.
Article in English | ProQuest Central | ID: covidwho-2281437

ABSTRACT

Due to the COVID‐19 pandemic, governments imposed several mobility restrictions which can be used to evaluate their impact on air quality and generate better‐targeted policies to improve it. Therefore, this study aimed to define sustainable mitigation measures to reduce air pollution based on quantifying the impacts of the restrictions imposed during the COVID‐19 pandemic on air quality in Portugal. Thus, hourly concentrations of PM10, PM2.5, NO2, O3, CO and SO2 were obtained from the Portuguese Air Quality Monitoring Network. Data was then divided into six periods (2020–2021) and compared with the corresponding historical periods (2015–2019). Furthermore, the satellite data of NO2, CO, and absorbing aerosol index (AAI) from the sentinel‐5P TROPOMI was collected to complement the analysis conducted for the monitoring data. Overall, air quality improved in all study periods and areas, except in industrial sites. The satellite data corroborated the results herein achieved and thus validated the real effect of the measures adopted in the country during the pandemic on air quality. Sustainable policies to improve air quality could include remote (or hybrid) work whenever possible as a long‐term measure and prohibition of travelling between municipalities when an extraordinary event of high air pollution is predicted or occurs. Other policies should be adopted for industrial areas. Given this, and as the restrictive mobility measures had a strong effect on reducing air pollution, the post‐COVID era represents an opportunity for society to rethink future mobility and other emerging policies, that should favour softer and cleaner means of transportation.

2.
Aerosol and Air Quality Research ; 22(10), 2022.
Article in English | ProQuest Central | ID: covidwho-2055783

ABSTRACT

The study aims to reveal the impact of three sequential strict-lockdowns of COVID-19 measures on the air pollutants including NO2, SO2, PM10, and PM2.5 in Ulaanbaatar, Mongolia during November 2020–February 2021 based on air quality network and satellite data. Based on measurements of automatic air quality sites in Ulaanbaatar, we found a substantial decrease in NO2 (up to 45%), PM10 (72%), and PM2.5 (59%) compared to the same periods in the previous five years. On the other hand, up to a threefold increase in SO2 concentration was seen. Compared to 2015–2020, the number of days exceeding the national air quality standard level of NO2 decreased by 55% during November 2020–February 2021. A similar trend was observed for PM10 and PM2.5 (30% and 14%, respectively). Conversely, days exceeding the national air quality standard level of SO2 increased by 58%. The third strict-lockdown exhibited significant reductions in pollutant concentrations. The percentage exceeding the national standard level for NO2, PM10, and PM2.5 constituted 23%, 50%, and 67% during the lockdown periods while it was 89%, 84%, and 91%, respectively, for the same periods in the previous five years. Even though Sentinel 5P-TROPOMI data do not fully reflect the above findings, they add valuable insights into the spatial pollution pattern during strict-lockdown and non-lockdown periods. The study demonstrates that measures taken during the strict-lockdown periods clearly influenced the values of daily patterns of NO2, PM10, and PM2.5 concentrations. On the contrary, it is important to note that SO2 concentration increased during the last two winter months after 2019.

3.
Atmosphere ; 13(8):1231, 2022.
Article in English | ProQuest Central | ID: covidwho-2023116

ABSTRACT

Brick kilns add enormous quantities of organic pollutants to the air that can cause serious health issues, especially in developing countries;poor air quality is associated with community health problems, yet receives no attention in Northern Pakistan. The present study, therefore, assessed the chemical composition and investigated the impacts of air pollution from brick kilns on public health. A field-based investigation of air pollutants, i.e., PM1, PM2.5 and PM10, CO2, CO, NO, NO2, H2S, and NH3 using mobile scientific instruments was conducted in selected study area locations. Social surveys were conducted to investigate the impacts of air pollution on community health. The results reveal the highest concentrations of PM1, PM2.5, and PM10, i.e., 3377, 2305, and 3567.67 µg/m3, respectively, in specific locations. Particulate matter concentrations in sampling points exceeded the permissible limits of the Pakistan National Environmental Quality Standard and, therefore, may risk the local population’s health. The highest mean value of CO2 was 529 mg/L, and other parameters, such as CO, NO, NO2, H2S, and NH3 were within the normal range. The social survey’s findings reveal that particulate matter was directly associated with respiratory diseases such as asthma, which was reported in all age groups selected for sampling. The study concluded by implementing air pollution reduction measures in brick kiln industries to protect the environment and community health. In addition, the region’s environmental protection agency needs to play an active role in proper checking and integrated management to improve air quality and protect the community from air hazards.

4.
Atmosphere ; 13(5):722, 2022.
Article in English | ProQuest Central | ID: covidwho-1871354

ABSTRACT

PM2.5 is an air contaminant that has been widely associated with adverse respiratory and cardiovascular health, leading to increased hospital admissions and mortality. Following concerns reported by workers at an industrial facility located in Santa Ana, California, workers and community leaders collaborated with experts in the development of an air monitoring pilot study to measure PM2.5 concentrations to which employees and local residents are exposed during factory operating hours. To detect PM2.5, participants wore government-validated AtmoTube Pro personal air monitoring devices during three separate workdays (5 AM–1:30 PM) in August 2021. Results demonstrated a mean PM2.5 level inside the facility of 112.3 µg/m3, nearly seven-times greater than outdoors (17.3 µg/m3). Of the eight workers who wore personal indoor sampling devices, five showed measurements over 100 μg/m3. Welding-related activity inside the facility resulted in the greatest PM2.5 concentrations. This study demonstrates the utility of using low-cost air quality sensors combined with employee knowledge and participation for the investigation of workplace air pollution exposure as well as facilitation of greater health-related awareness, education, and empowerment among workers and community members. Results also underscore the need for basic measures of indoor air pollution control paired with ongoing air monitoring within the Santa Ana facility, and the importance of future air monitoring studies aimed at industrial facilities.

5.
Aerosol and Air Quality Research ; 22(3):22, 2022.
Article in English | Web of Science | ID: covidwho-1699280

ABSTRACT

The historical analysis of particulate matter (PM) concentration proved that pro-clean-air legislation and grassroots movement have a positive impact on air quality in Krakow. However, when the temperature drops in late autumn, winter, and early spring, the problem of smog still occurs in the city. In a 24-hours averaging period, the concentration of PM10 has exceeded EU norms in 10 days in pandemic March 2021. It is estimated that 50% of the carbon fraction in PM10 measured in Krakow comes from domestic heating. This is mostly caused by the migration of air pollutants from neighboring municipalities (where the use of fossil fuels for heating is allowed) to Krakow (where this type of households heating is forbidden). In this paper, we analyzed PM10 concentrations in Krakow and neighboring municipalities. Moreover, we showed the main migration directions of air pollutants in connection with wind direction. We used statistical analysis to examine the relations between PM10 concentrations and other physical characteristics of the atmosphere. It includes measurements of pressure, temperature, and humidity. We were collecting data during early spring 2021 when car transportation was limited due to the COVID-19 lockdown in Poland. Car transportation in Krakow is responsible for up to 20% of the PM10 carbon fraction concentration. It allowed for observation of air pollutions from solid fuel heating with minimum traffic-generated pollution background. The Airly (c) low-cost sensors (LCS) network was used for this study.

6.
Sensors (Basel) ; 21(15)2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1335181

ABSTRACT

In this paper, we present a detailed analysis of the public data provided by low-cost sensors (LCS), which were used for spatial and temporal studies of air quality in Krakow. A PM (particulate matter) dataset was obtained in spring in 2021, during which a fairly strict lockdown was in force as a result of COVID-19. Therefore, we were able to separate the effect of solid fuel heating from other sources of background pollution, mainly caused by urban transport. Moreover, we analyzed the historical data of PM2.5 from 2010 to 2019 to show the effect of grassroots efforts and pro-clean-air legislation changes in Krakow. We designed a unique workflow with a time-spatial analysis of PM1, PM2.5, and PM10, and temperature data from Airly(c) sensors located in Krakow and its surroundings. Using geostatistical methods, we showed that Krakow's neighboring cities are the main sources of air pollution from solid fuel heating in the city. Additionally, we showed that the changes in the law in Krakow significantly reduced the PM concentration as compared to neighboring municipalities without a fossil fuel prohibition law. Moreover, our research demonstrates that informative campaigns and education are important initiating factors in order to bring about cleaner air in the future.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Heating , Humans , Pandemics , Particulate Matter/analysis , Poland , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL